翻訳と辞書
Words near each other
・ Generalized Anxiety Disorder 7
・ Generalized Appell polynomials
・ Generalized arithmetic progression
・ Generalized assignment problem
・ Generalized audit software
・ Generalized Automation Language
・ Generalized beta distribution
・ Generalized Büchi automaton
・ Generalized canonical correlation
・ Generalized chi-squared distribution
・ Generalized Clifford algebra
・ Generalized complex structure
・ Generalized context-free grammar
・ Generalized continued fraction
・ Generalized coordinates
Generalized dihedral group
・ Generalized Dirichlet distribution
・ Generalized distributive law
・ Generalized eigenvector
・ Generalized entropy index
・ Generalized Environmental Modeling System for Surfacewaters
・ Generalized epilepsy with febrile seizures plus
・ Generalized eruptive histiocytoma
・ Generalized erythema
・ Generalized essential telangiectasia
・ Generalized estimating equation
・ Generalized expected utility
・ Generalized extreme value distribution
・ Generalized filtering
・ Generalized first-price auction


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Generalized dihedral group : ウィキペディア英語版
Generalized dihedral group
In mathematics, the generalized dihedral groups are a family of groups with algebraic structures similar to that of the dihedral groups. They include the finite dihedral groups, the infinite dihedral group, and the orthogonal group ''O''(2).
==Definition==
For any abelian group ''H'', the generalized dihedral group of ''H'', written Dih(''H''), is the semidirect product of ''H'' and Z2, with Z2 acting on ''H'' by inverting elements. I.e., \mathrm(H) = H \rtimes_\phi Z_2 with φ(0) the identity and φ(1) inversion.
Thus we get:
:(''h''1, 0)
* (''h''2, ''t''2) = (''h''1 + ''h''2, ''t''2)
:(''h''1, 1)
* (''h''2, ''t''2) = (''h''1 − ''h''2, 1 + ''t''2)
for all ''h''1, ''h''2 in ''H'' and ''t''2 in Z2.
(Writing Z2 multiplicatively, we have (''h''1, ''t''1)
* (''h''2, ''t''2) = (''h''1 + ''t''1''h''2, ''t''1''t''2) .)
Note that (''h'', 0)
* (0,1) = (''h'',1), i.e. first the inversion and then the operation in ''H''. Also (0, 1)
* (''h'', ''t'') = (−''h'', 1 + ''t''); indeed (0,1) inverts ''h'', and toggles ''t'' between "normal" (0) and "inverted" (1) (this combined operation is its own inverse).
The subgroup of Dih(''H'') of elements (''h'', 0) is a normal subgroup of index 2, isomorphic to ''H'', while the elements (''h'', 1) are all their own inverse.
The conjugacy classes are:
*the sets
*the sets
Thus for every subgroup ''M'' of ''H'', the corresponding set of elements (''m'',0) is also a normal subgroup. We have:
::Dih(''H'') ''/'' ''M'' = Dih ( ''H / M'' )

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Generalized dihedral group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.